Surgical predictability of vertical GBR in the posterior mandible

Flap design, management and passivation of soft tissues as principal keys for success

By Drs. Marco Ronda and Claudio Stacchi

The effectiveness of guided bone regeneration (GBR), a technique used to promote horizontal or vertical bone regeneration, has been well-documented since the early 1990s.¹⁻⁴ The stability of the regenerated bone and its positive response in time, once functioning, has also been well-demonstrated.⁵⁻⁶

Vertical GBR is a technique with great potential but one that requires both the precise adherence to surgical protocols and application by operators with the appropriate knowledge and manual skills to ensure optimum management of soft tissues. In addition to achieving primary closure of the flaps, maintaining this closure during the entire period necessary for the formation and maturation of the new bone is a pre-requisite for the avoidance of membrane exposure, which inevitably leads not only to bacterial contamination but, nearly always, to the impairment of the surgical procedure of regeneration.⁹⁻¹⁰

Numerous studies have described various clinical protocols regarding the management of soft tissues in both the upper and lower arches.¹¹⁻¹⁷

This retrospective analysis describes the surgical technique of the management of soft tissues applied during GBR with non-resorbable membranes in 127 cases of vertical defects of the posterior mandible and evaluates the clinical results obtained.

Materials and techniques

Between 2000 and 2012, a total of 127 cases of vertical bone defects in edentulous posterior mandibles were treated with the use of GBR with non-resorbable membranes.

The technique was applied by following a surgical protocol, which has undergone few variations during the years. From 2000 to 2008, expanded polytetrafluoroethylene (e-PTFE) titanium-reinforced non-resorbable membranes (Gore-Tex TR9, W.L. Gore & Associates, Flagstaff, Ariz.) were used as a barrier device in 72 cases (Fig. 1).

From 2009 to 2012, high-density polytetrafluoroethylene (d-PTFE) titanium-reinforced non-resorbable membranes (Cytoplast TI250XL, Osteogenics Biomedical, Lubbock, Texas) were used as a barrier device in 55 cases (Fig. 2).

All the membranes were fixed mesially and distally on the lingual side with the use of titanium pins (Helmut Zepf Medizintechnik, Seitingen, Germany) or mini-screws (Pro-Fix, Osteogenics Biomedical, Lubbock, Texas) as well as mini-implants (Osteogenics Biomedical). The bonegraft material used was Collacel (Stryker, Mahwah, N.J.) or Bio-Oss (Osteohealth, Charlotte, N.C.). The range of time for bone maturation varied from 6 to 12 months, depending on the bone quality and the amount of bone to be replaced.
Biomedical, Lubbock, Texas) (Fig. 3). After positioning the graft material around the implants, which were left protruding from the crest (Fig. 4), the membranes were also stabilized on the buccal side with the same fixation devices (Fig. 5). Preparation of the implant sites, for the most coronal portion of the osteotomy, involved the use of twist drills and, for the most apical portion, near the mandibular nerve, a piezoelectric OT4 insert (Piezoeurgery, Mectron, Carasco, Italy) (Fig. 6).

Implants (Spline Twist and Tapered Screw-Vent, Zimmer Dental, Carlsbad, Calif.) were inserted leaving their most coronal portion protruding from the crest for a length equivalent to the vertical bone regeneration planned. In certain cases — those in which it was not possible to obtain adequate primary stability in low quantities of residual bone — the

• GBR, Page B4
OSTEGENICS
BIOMEDICAL

CYTOPLAST®
Titanium-Reinforced

Create the space and shape you need when performing vertical and horizontal ridge augmentations with Cytoplast™ titanium-reinforced PTFE membranes.

Shown actual size.

IDEAL PARTNERS
for ridge augmentation procedures

CYTOPLAST™
PTFE Suture
the soft monofilament

pro-fix™
precision fixation system

osteogenics.com | 888.796.1923
vertical bone regeneration preceded the positioning of the implants (Figs. 7, 8). Multiple cortical perforations, which created openings for osteopromotion, were then made with a piezoelectric OP’s insert (Piezosurgery, Mectron, Carasco, Italy) in order to stimulate blood and cell migration from the bone marrow spaces to the regeneration area. During the period of time analyzed, various graft materials, alone or combined, were used together with the membranes autologous bone; tricalcium phosphate; DBM (Dynagraft, Keystone Dental, Burlington, Mass.), MFDBA (Puros, Zimmer Dental, Carlsbad, Calif.); or combinations of mineralized and demineralized allograft bone (MFDBA & DFDBA, enCore, Osteogenics Biomedical).

Surgical management of soft tissue

All surgeries as well as postoperative care are carried out by a single operator. For each patient, treatment includes the analysis of a diagnostic wax-up and CT or CBCT scan performed with a template. The objective is not only to position the implants where the quantity of residual bone allows but to position their platforms on the ideal line situated approximately 2 mm under the cement-enamel junction of the adjacent teeth.

After performing local anesthesia, (articaine hydrochloride 4 percent with epinephrine 1:100,000, Septanest, Ogna, Muggio, Italy), a horizontal, mid-crestal, full thickness incision is performed in keratinized tissue. The incision extends from the distal margin of the last tooth adjacent to the treatment area to the ramus of the mandible, ending with a releasing incision on its buccal surface.

In the second molar area, to preserve the integrity of the lingual nerve, the scalpel should be inclined at an approximately 45 degree angle with the tip in vestibular direction, and the blade should touch the external oblique line while the incision is made in distal and buccal direction.

In the proximal vestibular zone, the incision continues intrasulcularly involving the last two teeth adjacent to the area to be treated and concludes with a vertical hockey stick releasing incision.

Lingually, the incision continues intrasulcularly until the gingival zenith of the last tooth and continues along the crest of the ridge for approximately 1 cm in the thickness of the keratinized gingiva. Full thickness flaps is then elevated and the mental nerve is isolated. The mobilization and release of the buccal flap is obtained with a horizontal periosteal incision performed with a new blade for the entire length of the flap, from the distal to the mesial release.

This longitudinal incision is performed approximately 5 mm apically from the crestal incision and should only affect the periosteal fibers. The passivation of the vestibular flap, thus obtained, allows for a mean coronal elevation of the flap of approximately 20 mm; this is the sum of the amount of tissue present above the periosteal line of incision (5 mm) and the stretching of the flap following the periosteal incision (15 mm) (Figs. 9, 10).

The lingual flap is also full thickness elevated until the mylohyoid line is reached. This maneuver allows for the obtaining of a mean coronal elevation
Of approximately 15 mm (Fig. 18). At this point, following the technique previously described by Ronda and Stacchi, the mylohyoid muscle insertion on the inner surface of the lingual flap is identified, approximately 5 mm apically from the crestal line of incision.

This insertion, with the use of a blunt instrument, is first isolated (Fig. 12), and then separated from the flap by applying light tensile force. This maneuver allows for the near doubling of the lingual flap passivation and brings the coronal elevation from approximately 15 mm to approximately 30 mm (Figs. 13, 14). The flaps thus passivated can be sutured covering the membrane without tension, using two different suture lines: one horizontal mattress suture with 3-0 PTFE approximately 5 mm apically from the crestal line of incision (Cytoplast Suture, Osteogenics Biomedical) and a series of interrupted sutures with 4-0 PTFE to complete the flap closure. The releasing incisions are closed with resorbable sutures (6-0, 7-0) (Serafit, Serag Wiessner, Nails, Germany).

The sutures are removed after approximately 12-15 days and, during this period, the patient uses a chlorhexidine 0.2 per cent mouthrinse twice a day for one minute. In addition, antibiotics (amoxicillin/clavulanic acid 875+125 mg) and NSAIDs (ibuprofen 600 mg) are prescribed for one week.

After a period of approximately six months, during which new bone formation is obtained and completed, the patient undergoes a second procedure for the removal of the membrane and fixation system, completing soft-tissue management (Figs. 15, 16).

Results
The goal of this study was to describe the results and complications that occurred both during and after surgery in 127 cases of vertical GBR with non-resorbable membranes, until their removal. Certain complications in a considerable percentage of cases can lead to the failure of the entire regenerative procedure. In order to list, describe, and analyze them, the classification proposed by Fontana et al. (2011) was used.

Beyond the normal sequelae associated with surgery (edema, blood extravasation and hematoma), neurological complications (B, Fontana 2011) occurred in three cases (2.4 percent). Paresthesia is believed to have been related to the re-lease and elevation of the vestibular flap, which most likely caused the stretching of mental nerve fibers. In all three cases, the symptoms of paresthesia subsided one month after the surgery.

During the healing period, no membrane exposure occurred in any of the cases (no Class I, II or III complications, Fontana 2011). In nine cases (7.1 percent), graft sepsis occurred in the absence of membrane exposure (Class IV, Fontana 2011). All Class IV complications occurred during the first month after the regenerative procedure.

Discussion
The objective of this retrospective analysis is to focus on the complications associated with the surgical technique of vertical regeneration with non-resorbable membranes in order to evaluate the level of surgical predictability associated with this procedure in view of the complexity and difficulty in augmenting the posterior ridge.

From the analysis of the results described, the general percentage of failure was 7.1 percent.

However, it is evident that with the application of conventional passivation techniques, and the introduction of the new lingual flap management technique, the extent of coronal displacement of the flaps guarantees the specialist a sufficient quantity of tissue to perform a tension-free suture above the regenera-
tion area.

This is confirmed by the fact that no membrane exposure occurred in the 127 cases analyzed. The primary cause of failure of this technique, from the analysis of our data, is the bacterial contamination of the graft-membrane-implant complex in its entirety.

Contamination can already occur during surgery (inappropriate handling of surgical instruments, graft contamination as a result of bacteria present in saliva) or during the postoperative phase (failed primary closure of the flaps or early exposure of the membrane). As seen, the appropriate management of soft tissue allows for an entirely passive and hermetic primary closure of the flaps, as well as its maintenance, for the entire du-
ration of the healing period.

The problem yet unresolved is that of the cases in which graft sepsis occurs, despite flap closure being perfectly main-
tained.

In this situation, which always mani-

The current flap passivation techniques available to the specialist have significantly reduced the percentage of failure associated with early exposure of the membrane.

About the authors

DR. MARCO RONDA

Graduated with a degree in medicine from the University of Verona. A one-year course in advanced surgery, taught by Dr. Massimo Simion, and a Masters course in Regenerative Techniques at the University of Pennsylvania are among the many specialization courses he has attended. Ronda periodically gives lectures and provides practical training courses in implantology and regenerative techniques at his practice in Genoa. He is also invited to speak at many national and international meetings and cooperates with several Italian universities, including Milan, Trieste, Modena, Genoa and Pisa, and is an adjunct professor at Bologna University.

The International Journal of Periodontics & Restorative Dentistry has published his study regarding a new surgical technique of lingual flap management that has been proven to increase bone gain in all cases. He is the author of an article that was published in the Clinical Oral Implants Research journal that compares expanded PTFE and dense PTFE in guided bone regeneration. He may be contacted at mronda@paol.it.

DR. CLAUDIO STACCHI

Graduated in dentistry (DDS) and specialized in oral surgery (MSc) at the University of Trieste (Italy). He is a contract professor in oral implantology since 2007 at the School of Dentistry and at the Master Program in Oral Surgery at the University of Trieste. He is an active founding member of the Italian Implantology Academy, active member of the Academy of Osseointegration, member of the International Team for Implantology (ITI), member of the Italian Society of Osseointegrated Implantology (SOIO) and member of the Italian Society of Oral Surgery and Implantology (SICOI).

Stacchi is a reviewer of the International Journal of Periodontics and Restorative Dentistry and of the Journal of Oral Implantology. He is also author of several publications on indexed journals and a speaker at national and international congresses on oral surgery and implantology topics. His professional practice is limited to periodontology and implantology at the Dental Clinic of the University of Trieste and at his private office in Gorizia.
Introducing

CustomDirect™

CAD Milled Bars & Abutments

Select from a wide-range of bars and abutments for Implant Direct’s popular industry-compatible implant interfaces below. Custom Direct bars are also available for Implant Direct and Nobel Biocare multi-unit, screw-receiving abutments as well as Implant Direct’s proprietary 1-piece ScrewIndirect™ implant. CustomDirect abutments may be fabricated in titanium or one of five different zirconia shades for optimal function and esthetics.

CustomDirect™ bars made using the industry’s only robotic and full automation machining centers for unsurpassed precision and efficiency. Select bar design and order online at www.custom-direct.com

GPS™ Titanium Bar
for 4-6 implants includes screws plus up to 4 male and female attachments - $995

ScrewIndirect™ Implant
Receive $100 off bars fabricated on four or more Implant Direct ScrewIndirect 1-piece implants or multi-unit abutments

Custom Titanium Abutment Lab designed - $100
Implant Direct designed - $130
Custom Zirconia/Ti Abutment Lab designed - $120
Implant Direct designed - $150

Hybrid Titanium Bar
for 4-6 implants includes screws - $795

Joining our full line of industry-compatible prosthetics

RePlant™
Internal Tri-Lobe Connection Compatible with NobelReplace™

Legacy™
45° Conical Hex Connection Compatible with Zimmer, Biometx/ITI®

InterActive™
78° Conical Hex Connection Compatible with NobelActive™ & NobelReplace CC

Swish™
Internal Octagon Connection Compatible with Straumann Tissue Level

<table>
<thead>
<tr>
<th>Bar Type</th>
<th>Laboratory Abutment</th>
<th>Straight Snap-In</th>
<th>Snap-On Conical</th>
<th>15° Angled Conical</th>
<th>Gold Implant</th>
<th>Zirconia/Ti Abutment</th>
<th>Angled Zirconia/Ti Abutment</th>
<th>Plastic Temporary Abutments</th>
<th>Ball Attachment</th>
<th>Custom GPS Abutment</th>
<th>Angled GPS Abutment</th>
<th>Multiple Use w/ Tip & Transfer</th>
<th>Straight Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zimmr Dental®</td>
<td>$162</td>
<td>$219</td>
<td>$199</td>
<td>$216</td>
<td>$245</td>
<td>$260</td>
<td>$245</td>
<td>$374</td>
<td>$374</td>
<td>$374</td>
<td>$374</td>
<td>$158</td>
<td></td>
</tr>
<tr>
<td>Straumann®</td>
<td>N/A</td>
<td>$202</td>
<td>$210</td>
<td>$210</td>
<td>$265</td>
<td>$374</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>$191</td>
<td></td>
</tr>
<tr>
<td>Nobel Biocare®</td>
<td>$194</td>
<td>$192</td>
<td>$175</td>
<td>$232</td>
<td>$223</td>
<td>$295</td>
<td>$295</td>
<td>$75</td>
<td>$225</td>
<td>$156</td>
<td>$236</td>
<td>$282</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Our Price</th>
<th>Laboratory Abutment</th>
<th>Straight Snap-In</th>
<th>Snap-On Conical</th>
<th>15° Angled Conical</th>
<th>Gold Implant</th>
<th>Zirconia/Ti Abutment</th>
<th>Angled Zirconia/Ti Abutment</th>
<th>Plastic Temporary Abutments</th>
<th>Ball Attachment</th>
<th>Custom GPS Abutment</th>
<th>Angled GPS Abutment</th>
<th>Multiple Use w/ Tip & Transfer</th>
<th>Straight Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implant Direct</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$112</td>
<td>$120</td>
<td>$120</td>
<td>$120</td>
<td>$120</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
</tr>
</tbody>
</table>

*Prices, products, and availability based upon US list prices. As of January 2013. All trademarks are property of their respective companies.
* Features vary.
* For list price for SLA/3D Tapered Effect Implant, closure screws, healing abutments, solid abutment, transfer and center cap.
* For list price for NobelActive w/bur abrasion, impingement creeping & abutment.
* Contact customer service.

Approved PACE Program Provider #2010MA2/GD Credit Approval does not imply acceptance by a state or provincial board of dentistry or ABO endorsement. 6/01/2012 to 7/31/2015.

Provider ID: 216714
Dare to Compare on Innovation, Quality, Service and Value

Legacy™ Implant
All-in-1 Packaging includes implant, abutment, transfer, cover screw & healing collar
$200 vs $633a from Zimmer Dental

 Reality Check Zimmer Customers
Save $433 with Legacy3:

SwishPlant™ Implant
All-in-1 Packaging includes implant, abutment, transfer, cover screw, healing collar & comfort cap
$200 vs $737a from Straumanna

 Reality Check Straumann Customers
Save $537 with SwishPlant

ReActive™ Implant
All-in-1 Packaging includes implant, abutment, transfer & cover screw
$200 vs $718a from Nobel Biocarea

 Reality Check Nobel Customers
Save $518 with Reactive

All-in-1 Shopping
Visit our new online store, find the implant you want and the compatible components, abutments, instruments, biologics, literature are just a click away! There's no need to jump through different product categories or pages, you can find it all in one spot.

Implantology Basics and Beyond

24 CE CREDITS
Implant Dentistry 101
3 Day Introduction Course
June 13-15 | July 18-20 | September 12-14

View Dr. Niznick’s 2-hour lecture & earn 2 CE credits FREE
Dr. Gerald Niznick discusses how the latest implant design innovations are shaping the future of implantology.

12 CE CREDITS
Laser Surgery: A Quantum Leap Forward
2 Day Certification Course
June 28-29 | July 19-20 | September 20-21
Implant position in the esthetic zone

Establishing a treatment plan is paramount

By Siamak Abai, DDS, MMedSc

Since the advent of modern root form osteointegrated implants in 1952, clinicians have strived for improvements in implant positioning in the esthetic zone to achieve predictable restorative and aesthetic results.

Years of clinical experience in congruence with controlled clinical studies have helped establish parameters as a guide for these results. Establishing a treatment plan and clinical protocol prior to implant placement is paramount.

Treatment planning traditionally begins with comprehensive medical and dental evaluations, articulated diagnostic casts, radiographs, cone-beam computed tomography (CBCT) scans and a diagnostic wax-up. Patient demands must be taken into consideration prior to surgery, and pre-surgical mockups may be necessary to convey the information to the patient.

The advancement of CBCT technology has led dentistry into a new realm of dimensional accuracy. In combination with the use of a surgical or guided stent, precise 3-D positioning of an implant has led to more accurate clinical results.

The importance of the implant position can be manifested in the four dimensions—sensitive positioning criteria: mesiodistal, labiolingual and apico-coronal location, as well as implant angulation. The ultimate goal is not only to avoid sensitive structures, but to respect the established biological principles to achieve esthetic results.

Mesiodistal criteria
Correct implant position in a mesiodistal orientation allows the clinician to avoid damaging adjacent critical structures. A minimum distance of 3 mm between implant and existing dentition prevents damage to the adjacent teeth and provides proper osseointegration and gingival contours.1–3 (Fig. 1a)
Distances of less than 3 mm between two adjacent implants leads to increased bone loss and can reduce the height of the inter-implant bone crest. A distance of more than 3 mm between two adjacent implants preserves the bone, giving a better chance of proper interproximal papillary height (Fig. 1b).

Labiolingual criteria
An implant placed too far labially can cause bone dehiscence and gingival recession while an implant placed too far lingually can cause prosthetic difficulties. A thickness of 1.8 mm of labial bone is critical in maintaining an implant soft-tissue profile (Fig. 2). Labially oriented implants compromise the subgingival emergence profile development, creating long crowns and misalignment of the collar with respect to the adjacent teeth.4

Apico-coronal criteria
Peri-implant crestal bone stability plays a critical role in the presence of interdental papilla.5 Implants placed too shallow may reveal the metal collar of the implant through the gingiva. Countersinking implants below the level of the crestal bone may give prosthetic advantages but can lead to crestal bone loss. The ideal solution would be the placement of an implant equicrestal or subcrestal to the ridge. However, the existing microgap at the implant abutment junction leads to bone resorption because of peri-implant inflammation.6 It is suggested an implant collar be located 2 mm apical to the CEJ of an adjacent tooth if no gingival recession is present (Fig. 3).

Implant angulation
Implant angulation is particularly important in treatment planning for screw-retained restorations. Implants angled too far labially compromise the placement of the restorative screw while implants angled too far lingually can result in an unhygienic and esthetic prosthesis design. For every millimeter of lingual inclination, the implant should be placed an additional millimeter apically to create an optimal emergence profile.7 In general, implant angulation should mimic angulation of adjacent teeth (Fig. 4). Furthermore, maxillary anterior regions require a subtle palatal angulation to increase labial soft-tissue bulk.8

Inclusive Tooth Replacement Solution
The Inclusive® Tooth Replacement Solution was developed by Glidewell Laboratories as a complete, prosthetically driven method of restoring missing dentition. The solution is composed of treatment planning, implant placement, patient-specific temporization and the definitive restoration (Figs. 5a–5f).

When utilizing the comprehensive range of Inclusive Digital Treatment Planning services, the clinician has absolute and precise control of each step. The clinician has control of the four dimensions of implant placement in the esthetic zone, creating a consistently predictable result.

To read the full article, go to www.inclusivemagazine.com. References are available from the publisher.
Controlled tissue contouring for immediate loading including BioTemps® Provisionals

INCLUSIVE®
Tooth Replacement System

A 3.7 mm X 11.5 mm inclusive® Tapered Implant was placed in the surgical site for tooth #7, as well as tooth #10.

BioTemps bridge #7-10 was seated, allowing for nice tissue healing prior to the final impressions.

After four months of integration, the BioTemps and patient-specific abutments were removed, revealing very healthy pink tissue with trained tissue contours.

The custom impression copings match the patient-specific soft tissue contours of the custom temporary components.

The final zirconia abutments were fabricated by the dental laboratory and torqued into place.

The final implant-retained bridge was cemented into place.

Clinical dentistry by Timothy F. Kosinski, DDS, MAGD

$695* Single Tooth Replacement
(Case as shown: $1,646*)

System includes: implant, drills, custom healing abutment, custom temporary abutment, BioTemps Provisional, custom impression coping, final custom abutment and ceramic crown.

*Price does not include shipping or applicable taxes.

For more information
888-786-2177
www.inclusivedental.com

The Inclusive Tooth Replacement System is a convenient and effective method of promoting and preserving the ideal tissue contours throughout the implant treatment process. It includes treatment options for these clinical situations:

◆ Immediate loading with custom temporary abutment and BioTemps® Provisional
◆ Single-stage implant placement with custom healing abutment

GLIDEWELL LABORATORIES
Premium Products - Outstanding Value

All inclusive implants, abutments and components are manufactured in our Irvine, Calif., facility.
The latest technology in narrow-diameter implants was the highlight of the ZEST Anchors Pre-Symposium program at the ICOI Spring Symposium.

The sold-out program held on May 16 at the Bellagio Hotel in Las Vegas was the ideal gathering place for clinicians wanting to learn more about treating the large overdenture patient population with the latest technology in narrow-diameter implants.

The four-hour program, titled “Utilizing The Next Generation of Narrow-Diameter Overdenture Implants to Expand Your Practice Revenue Opportunities,” was presented by Drs. Ara Nazarian and Paresh Patel.

It reviewed the demographics of the quickly expanding aging edentulous population, as well as products and techniques that clinicians can incorporate into their practices to help gain patient acceptance for the implant-retained overdenture treatment option.

Of particular interest to attendees was learning how the new LOCATOR® Overdenture Implant System, incorporating narrow-diameter dental implants and a world-leading overdenture attachment — LOCATOR, culminates into a complete system offering new options for patients with limited finances or those who decline bone grafting.

“When patients don’t accept an implant-retained treatment option, they are rejecting a better treatment in the long-run,” said Steve Schiess, president and CEO of ZEST Anchors. “We believe the LOCATOR Overdenture Implant System serves both the patient and practice by offering an effective, economical technique to secure patient’s dentures, ultimately resulting in increased treatment acceptance and increased practice revenue growth.”

The program concluded with a question-and-answer session with the presenters, as well as an optional opportunity to utilize LOCATOR Overdenture Implant system instrumentation to place the LOCATOR Overdenture Implant in sawbone mandibles.
Scenes from ICOI Spring Symposium

PhotoMed’s Rex Koskela, left, and Tony Aguilar help ICOI attendees find all the best digital cameras for their dental needs.

Impladent staff teach ICOI attendees about the company’s products, such as OsteoGen, OsteoTape, CollaForm and OsteoMend XTD Achilles Tendon Collagen.

Keystone Dental’s Todd Luger, left, and Marc Sabelli help attendees find immediate molar implants at the company’s booth.

Glidewell’s Jaclyn Belida, RDA, and Diana Ruelas introduce attendees to the company’s clinical and laboratory products.

Implant Direct Sybron International had a team ready to help answer questions and fill orders at the company’s booth.

Meisinger USA President Alex Miller, right, and his brother Matt Miller celebrate Meisinger’s 125th birthday at the symposium.

Keystone Dental’s Todd Luger, left, and Marc Sabelli help attendees find immediate molar implants at the company’s booth.

The Dentis staff at the company’s booth.

4th Annual High Altitude Bone Management® Winter Camp
February 5th – February 8th 2014
Boulder Creek, Colorado, USA

“Case presenters were excellent, hotel was comfortable, topics were excellent”
Dr. Tina Kojolka

“Wide variety of speakers, newer techniques, skiing was great”
Dr. Bill Hart

“Availability of speakers, Clarity of topics”
Dr. Art Missarian

“Quality of lectures was 1st class!, Combination of Lectures + hands-on, Location, Location-Stay in Colorado”
Dr. Michael Szwalt

Meisinger USA, LLC. • 10200 E. Easter Avenue • Centennial, Colorado 80122 • USA
Phone: +1 (303) 268-5400 • Toll free: +1 (866) 634-7464 • Fax: +1 (303) 268-5407 • E-Mail: info@meisingerus.com • Internet: www.meisingerus.com
ICOI to host its World Congress XXX in Istanbul, Turkey

The International Congress of Oral Implantologists (ICOI) will convene its World Congress XXX in Istanbul, Turkey. The dates for this three-day event are Oct. 3-5. The venue for the congress will be the Istanbul Lutfi Kirdar International Convention and Exhibition Centre (ICEC) located in the heart of the European side of this exciting dual-continent city. Situated on one of the world’s busiest waterways, Istanbul is flanked by the Black and Marmara Seas and separated by the famous Bosphorus, or Istanbul, Strait. Two-thirds of Istanbul’s 12 million people live on the European side of town, while one-third resides on the Asian side. ICOI’s World Congress will be held at the perfect time of year in Istanbul, and attendees are assured of favorable weather. An endless array of tourist opportunities awaits the delegates to the congress. Istanbul is home to the famous Blue Mosque, the Hagia Sophia Museum, the Topkapi Palace, the Grand Bazaar and the Egyptian Spice Market, among other attractions.

The theme for ICOI’s 30th World Congress is “International Innovation and Perspectives for Implant Reconstruction,” and the meeting features a world-class international faculty. The scientific program was designed by Dr. Scott Ganz from Fort Lee, N.J., and Dr. Ady Palti, Baden-Baden, Germany.

The Scientific Committee, in concert with the co-hosts for this World Congress, the Turkish Society of Oral Implantology and the Meffert Implant Institute, has put together a lineup of speakers who will present on innovative topics that include immediate loading, bone grafting, 3-D imaging, guided surgical applications, occlusion and much more.

Main podium lecturers include Drs. Shinichi Abe from Japan, Volkan Arisan from Turkey, Nabil Barakat from Lebanon, Georg Bayer from Germany, Fred Bergman from Germany, David Garber from the United States, Aslan Gokbuget from Turkey, Cuneyt Karabuda from Turkey, Christian Makary from Lebanon, Stavros Pelekanos from Greece, Marco Rinaldi from Italy, Nigel Saynor from the United Kingdom, Georgios Romanos from the United States, Avi Schetritt from the United States, Deborah Schwartz-Arad from Israel, Gerard Scortecci from France, Marius Steigmann from Germany, Jon Suzuki from the United States, Istvan Urban from Hungary and Gerlig Widmann from Austria.

The congress will convene at 1:30 p.m. on Thursday, Oct. 3. However, on Thursday morning, delegates will get the opportunity to attend several pre-congress courses given by our sponsors. Scientific table clinics and poster presentations will also be a part of the program. Those interested in presenting either a poster or table clinic should visit the ICOI web site, www.icoi.org, for guidelines and application forms or e-mail Dr. Avi Schetritt at dravi@perio.org.

The social event of the World Congress will be held at the exciting, slightly naughty, but oh so much fun, Palas Cagid. This popular night spot (we will be taking over the entire club) is located near the ICEC, but buses will take guests there, leaving from the ICEC at 7:45 p.m. on Friday, Oct. 4.

Cocktails will be served starting at 8 p.m. followed by dinner and then the fun begins. A stage show will entertain the guests until midnight.

For complete information on ICOI’s World Congress XXX, visit the website at www.icoi.org.
DENTSPLY Implants is the union of two successful and innovative dental implant businesses: DENTSPLY Friadent and Astra Tech Dental.

DENTSPLY Implants offers a comprehensive line of implants, including ANKYLOS® Astra TECH Implant System™ and XiVE®, digital technologies such as ATLANTIS™ patient-specific abutments, regenerative bone products and professional development programs.

We are dedicated to continuing the tradition of DENTSPLY International, the world leader in dentistry with 110 years of industry experience, by providing high quality and groundbreaking oral healthcare solutions that create value for dental professionals, and allows for predictable and lasting implant treatment outcomes, resulting in enhanced quality of life for patients.

We invite you to join us on our journey to redefine implant dentistry. For more information, visit www.dentsplyimplants.com.
NO MORE COMPROMISE!

Until now, choosing a narrow diameter implant often meant a sacrifice in attachment performance and ultimately patient satisfaction. Introducing the LOCATOR® Overdenture Implant System (LODI) featuring LOCATOR, the world's leading overdenture attachment.

The unique two-piece coronal design of LODI, not found with O-Ball mini implants, is a critical feature that optimizes patient satisfaction. The LOCATOR attachment is seated after implant placement making case planning, implant surgery and restoration easier and allowing for replacement if wear should occur throughout time. LODI is manufactured from the strongest titanium available, features a proven RBM surface and is designed to provide exceptional primary stability when immediate loading may be indicated.

The LOCATOR Attachment provides all of the superior benefits known worldwide including its patented pivot technology, customizable levels of retention, and draw correction of divergent implants up to 40 degrees. All of this while having a dramatically reduced vertical height compared to O-Ball mini implants.